Problem 1.13

The charge entering the positive terminal of an element is

$$
q=5 \sin 4 \pi t \mathrm{mC}
$$

while the voltage across the element (plus to minus) is

$$
v=3 \cos 4 \pi t \mathrm{~V}
$$

(a) Find the power delivered to the element at $t=0.3 \mathrm{~s}$.
(b) Calculate the energy delivered to the element between 0 and 0.6 s .

Solution

Part (a)

The power is the product of voltage and current.

$$
\begin{aligned}
p(t)=v(t) i(t)=v(t) \frac{d q}{d t} & =(3 \cos 4 \pi t \mathrm{~V}) \frac{d}{d t}(5 \sin 4 \pi t \mathrm{mC}) \\
& =(3 \cos 4 \pi t \mathrm{~V})(20 \pi \cos 4 \pi t \mathrm{~mA}) \\
& =60 \pi \cos ^{2} 4 \pi t \mathrm{~mW}
\end{aligned}
$$

Therefore, the power delivered to the element at $t=0.3 \mathrm{~s}$ is

$$
p(0.3)=60 \pi \cos ^{2} \frac{6 \pi}{5} \mathrm{~mJ} \approx 123 \mathrm{~mJ} .
$$

Part (b)

Integrate the power from $t=0$ to $t=0.6 \mathrm{~s}$ to find the energy delivered to the element in this interval.

$$
\begin{aligned}
W=\int_{0}^{0.6} p(t) d t & =\int_{0}^{0.6}\left(60 \pi \cos ^{2} 4 \pi t\right) d t \mathrm{~mW} \\
& =60 \pi \int_{0}^{0.6} \cos ^{2} 4 \pi t d t \mathrm{~mW} \\
& =60 \pi \int_{0}^{0.6} \frac{1}{2}(1+\cos 8 \pi t) d t \mathrm{~mW} \\
& =\left.30 \pi\left(t+\frac{1}{8 \pi} \sin 8 \pi t\right)\right|_{0} ^{0.6} \mathrm{~mJ} \\
& =30 \pi\left(\frac{3}{5}+\frac{1}{8 \pi} \sin \frac{24 \pi}{5}\right) \mathrm{mJ} \\
& \approx 58.8 \mathrm{~mJ}
\end{aligned}
$$

